Digital System Design

Objective:

1. Binary system operations.
2. Representation of negative numbers.
3. Two's complement addition and subtraction.
4. One's complement addition and subtraction.

1) Binary system operations

a) Binary Addition:

Example:-

Addition table

1	$\frac{\text { Sum }}{\text { Carry }}$
$0+0$	0
$0+1=1$	0
$1+0=1$	0
$1+1=0$	1

b) Binary subtraction:

Example:-

Subtraction table

$$
0-0=0
$$

$$
1-0=1
$$

$$
1-1=0
$$

$$
0-1=1 \text { land the }
$$

$$
\text { borrow }=11
$$

The borrow goes through three columns to reach a borrowable 1.

```
100=011 (the modified bits), + 1 (the borrow)
```

c) Binary multiplication:

Example:-

$$
\begin{aligned}
& 0 * 0=0 \\
& 0 * 1=0 \\
& 1 * 0=0 \\
& 1 * 1=1
\end{aligned}
$$

$\begin{array}{llllllll}1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \text { (result) }\end{array}$

2) Representation of negative numbers

There are many ways to represent negative numbers:
\checkmark Signed-magnitude system.
\checkmark Complement number systems.

- Signed-magnitude representation:

$>$ In signed-magnitude system, the number consists of a magnitude and a symbol indicating whether the magnitude is positive or negative.
$>$ In binary system: extra bit position to represent the sign (sign bit): (MSB) is used.
Sign bit: $\mathbf{0}=\mathrm{plus}, 1=$ minus.

Example:-

$$
\begin{array}{ll}
0 \underbrace{1010101_{2}}_{\text {magnitude }}=+85_{10}, \mathbf{1 1 0 1 0 1 0 1}_{2}=-85_{10} \\
\text { Sign bit } \\
\mathbf{0 1 1 1 1 1 1 1}_{2}=+127_{10} & \mathbf{1 1 1 1 1 1 1 1}_{2}=-127_{10} \\
\mathbf{0 0 0 0 0 0 0 0}_{2}=+0_{10} & \mathbf{1 0 0 0 0 0 0 0}_{2}=-0_{10}
\end{array}
$$

- Complement number systems:

$>$ Complement number system negates a number by talking its complement as defined by the system.
$>$ There are two complement number systems that can be used:

- Two's complement system
- One's complement system.

Two's complement system:
The two's complement of an \mathbf{n}-digit number \mathbf{D} is obtained by:
Subtracting the number from $\mathbf{r}^{\mathbf{n}}$

$$
\mathbf{r}^{\mathbf{n}}-\mathbf{D}
$$

- r-The base of the system.

This can be accomplished by complementing the individual digits of D , and adding 1 to the result.
$>$ In decimal system, it's called the 10's complement.
$>$ For binary numbers, it's called two's complement.
$>$ The MSB of a number in this system is used as the sign bit.

Example 1:
$\begin{aligned} 17_{10}= & 00010001_{2} \\ & \square \text { Complement bits }\end{aligned}$
$\frac{+1}{11101111=-17_{10}}$

Example 2:
$-99_{10}=10011101_{2}$ complement bits 01100010
$+\quad 1$
$\mathbf{0 1 1 0 0 0 1 1}_{2}=\mathbf{9 9}_{10}$

Example 3:
$0_{10}=00000000_{2}$

Important Note:

The number 0 has one representation using two's complement.

One's complement representation:

$>$ In one's complement representation the complement of an \mathbf{n}-digit number \mathbf{D} is obtained by: Subtracting the number from $\mathbf{r}^{\mathbf{n}} \mathbf{- 1}$

$$
\left(r^{n}-1\right)-D
$$

$>$ This can be accomplished by complementing the individual digits of D , without adding 1 as in two's complement systems.

- In decimal system it's called 9's complement.
- In binary system it's called 1's complement.

Example 1

$$
\begin{gathered}
17_{10}=\text { 00010001 }_{2} \\
\text { П. }
\end{gathered}
$$

$11101110_{2}=\mathbf{1 7}_{10}$
Example 2
$-99_{10}=10011100_{2}$

$$
\frac{\sqrt{1}}{01100011_{2}}=99_{10}
$$

in one's complement :

- MISB is used as sign digit.
- The number 0 has two representations using one's complement:

00000000 positive zero.
11111111 negative zero.

3) Two's complement addition and subtraction

Example 1: adding two positive numbers: +15 +27

$+$| 0 | 0000 | 1111 | |
| :--- | :--- | :--- | :--- |
| $+\quad 0$ | 0001 | 1011 | |
| 0 | 0010 | 1010 | $=(42)_{10} \rightarrow$ (okay) |
| \square | | | |

Sign bit

Example 2: adding two positive numbers with overflow: +78 +85
$+78+85=(163)_{10} \quad$ (we need 8 bits +1 for sign bit)

Example 3 43-25:

Example 4 25-43:

$$
+\begin{array}{cc}
0 & 0011001 \\
1 & 1010 \\
\hline
\end{array}
$$

Example 5 -15-27:

Ignore
4) One's complement addition and subtraction
> Note: the same as two's complement addition and subtraction, except that the carry value must be added to the result in LSB bit.

Example 1: 43-25:

Example 2: 25-43:

00011001
 $+\quad 11010100$
 11101101

