

Objective:

- 1. Binary system operations.
- 2. Representation of negative numbers.
- 3. Two's complement addition and subtraction.
- 4. One's complement addition and subtraction.

1) Binary system operations

a) Bin	ary A		on:						
LAC	шрте	. –						Addition	table
	1	1	1	0	1	←	- carries	<u>Sum</u>	Carry
+	1	1	1	1	0	1		0 + 0 = 0	0
	1	0	1	1	0	1		0 + 1 = 1	0
1	1	0	1	0	1	0	-	1+0 = 1	0
								1+1 = 0	1

b) Binary subtraction: *Example: -*

	B borrow	001111100
First number	→X 229	11100101
Second	→ Y 46	00101110
number	x-y = 183	10110111
	Û	

Subtraction table
0 - 0 = 0
1-0 = 1
1-1 = 0
0 - 1 = 1 (and the borrow =1)

c) Binary multiplication: Example:-

Ι			*	1	0 1	1 0	1 1	1 0
	+	0	1 0 1	0 0 0	0 1 0 1	0 1 0	0 1	0
+	1	1	1	0	0	1	1	0 (result)

Multiplication	table
0 * 0 = 0	
0 * 1 = 0	
1 * 0 = 0	
1 * 1 = 1	

2) Representation of negative numbers

> There are many ways to represent negative numbers:

- ✓ Signed-magnitude system.
- ✓ Complement number systems.
 - Signed-magnitude representation:
- > In signed-magnitude system, the number consists of a *magnitude* and a *symbol* indicating whether the magnitude is positive or negative.
- > In binary system: *extra bit position to represent the sign* (sign bit): (*MSB*) is used.

Sign bit: 0 = plus, 1 = minus.

Example:-

 $01010101_2 = +85_{10}$, $11010101_2 = -85_{10}$

Sign bit magnitude

 $01111111_2 = +127_{10}$

 $00000000_2 = +0_{10}$

• Complement number systems:

Complement number system negates a number by talking its *complement* as defined by the system.

 $11111111_2 = -127_{10}$

 $1000000_2 = -0_{10}$

- > There are two complement number systems that can be used:
 - Two's complement system
 - One's complement system.

Two's complement system:

> The two's complement of an **n-digit** number **D** is obtained by:

Subtracting the number from Γ^n

$$\mathbf{r}^{\mathbf{n}} - \mathbf{D}$$

• **r**- The base of the system.

- This can be accomplished by complementing the individual digits of D, and adding 1 to the result.
 - > In decimal system, it's called the **10's complement**.
 - > For binary numbers, it's called **two's complement**.
 - > The *MSB* of a number in this system is used as the *sign bit*.

Example 1:

Example 2:

 $17_{10} = 00010001_2$ $-99_{10} = 1001\underline{1}101_2$ complement bits **Complement bits** 01100010 111011**Y**0 +1 1 + $11101111 = -17_{10}$ $01100011_2 = 99_{10}$ Example 3: $0_{10} = 0000000_2$ 11111111 $00000000_2 = 0_{10}$

Important Note:

The number 0 has one representation using two's complement.

One's complement representation:

In one's complement representation the complement of an n-digit number D is obtained by: Subtracting the number from rⁿ-1

$$(r^n-1)-D$$

- This can be accomplished by *complementing the individual digits of* D, *without adding 1* as in two's complement systems.
 - In decimal system it's called **9's complement**.
 - In binary system it's called **1's complement**.

Example 1

$$17_{10} = 00010001_2$$

$$11101110_2 = 17_{10}$$

Example 2

$$-99_{10} = 10011100_2$$

$$01100011_2 = 99_{10}$$

in one's complement :

- MSB is used as <u>sign digit</u>.
- The number 0 has two representations using one's complement:
 - 00000000positive zero.11111111negative zero.

3) Two's complement addition and subtraction

Example 1: adding two positive numbers: +15 +27

Example 2: adding two positive numbers with overflow: +78 +85

<u>+</u>	1 1	1110001 1100101
Ignore	1	1010110
ignore		

4) One's complement addition and subtraction

Note: the same as two's complement addition and subtraction, except that the carry value must be added to the result in LSB bit.

Example	ə 1:	43-25:					
	00	101011					
+	11	100110					
(Carry)	1000	010001		-			
			▶1	(carry added)			
-	00	010010					
Example 2: 25-43:							
	00	011001					

+ 11010100

11101101